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AbslracL We present a general theory of nonlinear relaxation times (NLRT) for stochastic 
transient dynamics of systems driven ty an asymmetric dichotomous Markov noise (DMN). 
' k 1 k . 0  limiting cases of this general result a n  studied the Poissonian white shot noise 
( w s ~ )  and the Gaussian white noise (GwN). 

1. Introduction 

The theory of stochastic differential equations is a useful tool in the description of a 
great variety of non-equilibrium situations [ 1 4 ] ,  mainly for the transient behaviour 
of the systems in which fluctuations play a very important role [7]. In particular, the 
theoretical study of transient relaxation of both unstable [b16]  and marginal 117-201 
states has received increasing interest. The experimental analysis of the relaxation of 
unstable states has been devoted to the study of transient dynamics in lasers [21-231. 
The mathematical modelling of these situations leads to a Langevin-type stochastic 
differential equation 

5 = d.)+ s ( z ) t ( l )  (1.1) 

where E(t )  stands for a stochastic force or noise. In the study of the transient 
dynamics of the systems described by (1.1) three theoretical approaches have been 
proposed. The first one considers an evolution equation of a probability density, in 
which one asks for the time dependence of this density or its statistical moments. 
In general, this problem does not allow an exact analytical solution when applied 

second one makes use of the first passage time (FPT) techniques, in which the random 
variable is the time necessary to cross a given boundary [1-3, 51. The relevant 
quantities for using this method are the  statistical momen& of the mT distribution. 
The third theoretical approach is the so-called nonlinear relaxation time (NLRT). 
Its definition is based on the transient evolution of the statistical moments and it 
parallels, to some extent, the FPT formulation. 

The general formalism of the NLRT when applied to Gaussian white noise has 
been developed in (12, 131. In the case of Gaussian coloured noise, an approximated 
solution of NLRT is given for small correlation times of the noise [14]. Both schemes 
have been used to study the decay of unstable states. The detection of weak optical 
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to nonlire2r system, b.! s!andard apprnvimarion me!hods are avai!ab!p. [2, 3j. The 
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signals is a recent application of this m e t h o d o l o ~  [16]. Note should be taken that the 
formalism also admits a simple extension to non-Gaussian noises [24], two of which 
we are interested in. 

Among those non-Gaussian noises on which we focus, the Poissonian white shot 
noise (WSN) and the dichotomous Markov noise (DMN) (also !mown as the random 
telegraph signal) are the most interesting ones which have been widely studied [24- 
281. The purpose in this paper is to present the general theory of NLRT and its 
application to systems driven by DMN in the asymmetric case. We shall also show 
how the general result of the NLRT can be reduced in two limiting cases. 

The main characteristic of the asymmetric DMN is that the random variable can 
take two values, A and A’. Each of these states has a given average duration T~ and 
rA, respectively, and then the transition from one state to another occurs at random 
time points. DMN is a simple example of a coloured noise, since its time correlation 
function is an exponentially decreasing function with finite-time correlation T and 
intensity D 
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D 
( t ( t ) t ( t ’ ) )  = -e+-t’l/r. T (1.2) 

t S N ( t ) = c h ( t - t i )  (1.3) 

The shot noise is defined as the sum 

where h is a given function and t i  are random time points distributed with a given 
average time spacing A-’. The probability to have n such time points in the time 
interval of duration t is then given by the Poisson distribution 

The Poissonian WSN is defined for the case in which h is proportional to a Dirac 
6 function, 

tWsN(t) =xwi6(t-ti) (1.5) 

where the 6 pulses are weighted by w i ,  which are random independent variables with 
a probability density $(w). The process t W N ( t )  is white but non-Gaussian, since its 
cumulants are all non-vanishing, although 6 correlated [25, 261. 

The natural definition of the NLRT associated with the average ( f ( z ( 1 ) ) )  of a 
function of the relevant variable z is [12-141 

where C ( t )  = ( f ( z ( t ) ) )  - (f(z))%,, and (f(z)), and (fh = (f(z(0))) are the 
steady state and initial averages, respectively. The quantity defined in the integrand 
has no dimensions, so that the integral has the dimensions of time and characterizes 
the global relaxation of f (z) .  Definition (1.6) gives us an exact solution of T through 
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indirect methods which neither require explicit knowledge of ( f ( x ) )  nor P ( x , t )  as 
functions of 1. 

The structure of this paper is as follows. In section 2, the general theory of NLRT 
for DMN, in the asymmetric case, is developed. In section 3, the NLRT for the WSN 
case is given [29]; this time scale, in turn, is shown to be a limiting case of the general 
result given in section 2 We show in section 4 that the N m  for GWN is obtained as 
a particular case of the WSN. Finally the conclusions are given in section 5. 

2. NLRT for asymmetric dichotomous Markov noise 

We assume now that the noise c ( t )  in equation (1.1) is a DMN, as was specified earlier. 
We denote by p and p’ the respective transition probability per unit time between the 
two values of the noise. In the following we Will always consider stochastic processes 
with vanishing average value. This implies that for DMN 

- + + I O .  A A‘ 
w w  

Then [ ( t )  is characterized by three independent parameters. The correlation function 
of the noise can be written as follows [3] 

It has a finite correlation time T = (w+p’) - ’  = A-’, and the process defined by (1.1) 
is non-Markovian. However, it is possible to reduce the problem to a Markovian one. 
This Markovian formulation allows us to construct a set of coupled partial differential 
equations [27, 281. Therefore the study of the NLRT can be made in terms of this 
formulation, following the procedures in [13, 241. The idea of the method is based 
on the definition of a vector P ( x , t )  which obeys the evolution equation 

a P ( x * t )  = L ( x ) P ( x , t )  
a t  

where 

and the operator L ( x )  is the matrix 

A - A ‘  i 3g ( z ! )  
2 a x  
-- A + A‘ 

L ( x )  = 

(2.5) 
The meaning of the components in equation (2.4) is given in terms of the joint 

probability densities for the variables x and e,  namely [6] 

P ( x , t )  = P ( x , A ; t ) + P ( x , A ’ ; t )  (2.Q) 

P ( x , t )  = P ( x , A ’ ; t )  - P ( x , A ; t ) .  (2.66) 
- 
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The first component of equation (24) is the true probability density, Whereas the 
second component of (2.4) is not really a probability density but an auxilialy quantity. 

In terms of this formalism, it is convenient to define some appropriate quantities 
that enable the NLRT (1.6) to be reduced to a quadrature. These quantities are 

W ( Z : ?  t )  = P(Z>i) - Ps t ( I )  (2.7) 

and 

where p( z) satisfies the equation 

m 

p ( z ) = J W ( z , t ) d l .  
0 

Therefore we find that the NLRT, defined in (1.6), can be written as 

(2 9) 

(2.10) 

The calculation of equation (2.10) can be made after we find an expression for 
p ( z ) .  First of all, equation (2.3) allows us to write the relationship between W(z,O) 
and d x ) ,  

- W(+,O) = L ( Z ) P ( Z )  (2 11) 

in such a way that the differential equation for p ( z )  is given by 

where the prime denotes the derivative with respect to I, and De,(+) is called the 
static effective diffusion [24], which reads as 

Dee(.) = - [ U ( + )  + A d r ) l [ u ( z )  + A's(+)] (2 13) 

and 

with 
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and 

h( E) = Fst( z )  - Y"( z) . (2.16) 

The solution of the differential equation (2.12) is substituted into equation (210) 
and after an integration by parts, the NLRT for the stochastic systems derived by an 
a y " t r i C  DMN dl be 

g 64) d z  (2.17) +A-'[(U+,-~)~P- A + A' - A - A' 
2 

where 

(2.19) 

and 

6 P  = F ' ( z )  = PSI($) - Pu(z) 

6F = h ( z )  = Fsl(z) -F,,(z) 
(2.20) 

(2.21) 

where Fs,(z) arises from a simple analysis of equation (2.3), then 

(2.22) 

The structure of solution (2.17) is very similar to that found in 1141 to first order 
for the correlation time 7 for Gaussian coloured noise. In fact, we have a first 
contribution in (2.17) which would be a GWN solution of an effective Markovian 
problem. 7 h e  second term is of order 7 = A-', and it is a term which couples 
information about the initial conditions of the system wriable z and the noise 
variable, {. It also contains information about the type of model. 

The initial decoupling between the system and noise variables, would be a simple 
hypothesis to describe the initial relaxation of the system. This assumption simplifies 
the second term of (2.17) to a simple quantity ru ( z )Pu(z ) .  However, the case of 
great interest which connects with real situations, focuses on the distributed initial 
conditions and this means that the initial conditions have a certain probability density 
with finite width. The most general case would be the one in which the initial state 
corresponds to the steady state of a certain model with other parameters U * ,  y', A* 
and A". This is F,,(z) = P,;(z), where P; is the same as (2.22) but 

(2.23) 
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which reduces (2.17) to the following expression 
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A - A' 
2 (2.24) 

3. The NLRT for white shot noise (WSN) 

In order to see the self-consistence of the general result obtained in section 2, we 
will show how equation (2.17) can he reduced, in an appropriate limit, to the NLRT 
for a system driven by a WSN. 

For the WSN case we take the limits pi - 00, A' - 00, with A ' / ~ L '  = wu = cte. 
The parameter p plays the role of X and A becomes equal to -Xuu. In this case 

( 3 4  

(3.2) 

(3.3) 

In equation (2.17) we can note that the factor -A contributes to a constant term, 
and therefore it does not vanish. So we must analyse with some a r e  all the second 
terms of (2.17). Let us define J ( z )  as 

J ( z ) = [ v + i A + A ' g ] 6 P - i ( A - A ' ) g  6P (3.4) 

which can be written in an explicit way, taking into account equations (2.20)-(22) and 
(2.6), as 

J ( z )  = 2 [ v +  ~ ( A + A ' ) g ] 6 P + v P u ( z ) - g [ A P ( z , A , 0 ) + A ' P ( z , A ' , 0 ) ] .  

(3.5) 

We now call 

B ( z )  = AP(z,A,O)+A'P(z,A' ,O).  (3.6) 

If we assume that at the time t = 0, the variable of the system z and the two 
values and of the noise are decoupled, and taking into account that both initial 
distributions are the Same as the initial stationary probability (see [GI, p 7-59), W e  

obtain 

B(z) = ~ Pu(z)(Ap' - A p ' )  = 0. (3.7) A 
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Therefore, in the considered limits and with the additional hypothesis about the 
initial decoupling between the noise and system variables, the time scale for the WSN 
is given by [29] 

where F ( z )  and I(z) are the Same as in (2.15) and (2.18) respectively; and 

Q(z)  = Wug(X - U )  

(3.9) 

4. NLRT for Gaussian white noise (GWN) 

This time scale can now he obtained from equation (3.8) in the limits w0 - 0, X -+ CO, 

but Xu: = D = cte. In these conditions we get 

Then, the NLRT for the dynamical system (1.1) driven by GWN reads 

(4.3) 

which is a known result and Pst corresponds to the expression for GWN [12-141. 

5. Conclusions 

We have obtained, in general circumstances, a formal and exact expression for the 
NLKT for characterizing the transient dynamics of systems driven by asymmetric 
dichotomous noise. 

Expression (2.17) shows a quasi-Markovian contribution in the first term and the 
non-Markovian effects appear in the second term. The important point of our result 
is that, as in the coloured noise problem [14], the non-Markovian contribution shows 
a natural initial coupling between the system and noise variables. Therefore the 
NLRT is an appropriate quantity with which to study non-Markovian effects on initial 
conditions. 
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