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Abstiract. We present a general theory of nonlinear relaxation times (NLRT) for stochastic
transient dynamics of systems driven by an asymmetric dichotomous Markov noise (DMN).
Two limiting cases of this general result are studied: the Poissonian white shot noise
{wsn) and the Gaussian white noise (GWN).

1. Introduction

The theory of stochastic differential equations is a useful tool in the description of a
great variety of non-equilibrium situations [1-6], mainly for the transient behaviour
of the systems in which fluctuations play a very important role [7]. In particular, the
theoretical study of transient relaxation of both unstable [8-16] and marginal [17-20]
states has received increasing interest. The experimental analysis of the relaxation of
unstable states has been devoted to the study of transient dynamics in lasers [21-23],
The mathematical modeiling of these situations leads to a Langevin-type stochastic
differential equation

i = o(x) + g(2)E(D) (L1

where £(t) stands for a stochastic force or noise. In the study of the transient
dynamics of the systems described by (1.1) three theoretical approaches have been
proposed. The first one considers an evolution equation of a probability density, in
which one asks for the time dependence of this density or its statistical moments,
In general, this problem does not allow an exact analytical solution when applied
to nonlinear systems, but standard approximation methods are available [2, 31 The
second one makes use of the first passage time (FPT) techniques, in which the random
variable is the time necessary to cross a given boundary [1-3, 5]. The relevant
quantities for using this method are the statistical moments of the FpT distribution.
The third theoretical approach is the so-called nonlinear relaxation time (NLRT).
Its definition is based on the transient evolution of the statistical moments and it
parallels, to some extent, the FPT formulation.

The general formalism of the NLRT when applied to Gaussian white noise has
been developed in [12, 13]. In the case of Gaussian coloured noise, an approximated
solution of NLRT is given for small correlation times of the noise [14]. Both schemes
have been used to study the decay of unstable states. The detection of weak optical
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signals is a recent application of this methodology [16]. Note should be taken that the
formalism also admits a simple extension to non-Gaussian noises [24], two of which
we are interested in.

Among those non-Gaussian noises on which we focus, the Poissonian white shot
noise (WSN) and the dichotomous Markov noise (DMN) (also known as the random
telegraph signal) are the most interesting ones which have been widely studied [24-
28]. The purpose in this paper is to present the general theory of NLRT and its
application to systems driven by DMN in the asymmetric case. We shall also show
how the general result of the NLRT can be reduced in two limiting cases.

The main characteristic of the asymmetric DMN is that the random variable can
take two values, A and A’. Each of these states has a given average duration 7, and
Tas fespectively, and then the transition from one state to another occurs at random
time points. DMN is a simple example of a coloured noise, since its time correlation
function is an exponentially decreasing function with finite-time correlation r and
intensity D

(EDE)) = ==/, (12)
The shot noise 18 defined as the sum

Enlt) = Z h{t—1,;) (1.3)

where h is a given function and t; are random time points distributed with a given
average time spacing A~1. The probability to have n» such time points in the time
interval of duration ¢ is then given by the Poisson distribution

P, ()= ()::!)n e, (1.4)

The Poissonian WsN is defined for the case in which A is proportional to a Dirac
¢ function,

Ewsn(t) = Z w6(t—1;) (1.5)

where the é pulses are weighted by w;, which are random independent variables with
a probability density ¢(w). The process Eygy(t) is white but non-Gaussian, since its
cumulants are all non-vanishing, although & correlated [25, 26].

The natural definition of the NLRT associated with the average (f(z(t))} of a
function of the relevant variable « is [12-14]

=[S

where C(1) = (f(2(t))} = {f(z))q and (f(2))y and (f)y = (f(=(0))) are the
steady state and initial averages, respectively. The quantity defined in the integrand
has no dimensions, so that the integral has the dimensions of time and characterizes
the global relaxation of f(z). Definition (1.6) gives us an exact solution of 7" through

(1.6)

th



NLRT formalism for asymmetric dichotomous Markov noise 6181

indirect methods which neither require explicit knowledge of {f(z)} nor P(xz,t) as
functions of 1.

The structure of this paper is as follows. In section 2, the general theory of NLRT
for DMN, in the asymmetric case, is developed. In section 3, the NLRT for the WSN
case is given [29]; this time scale, in turn, is shown to be a limiting case of the general
result given in section 2. We show in section 4 that the NLRT for GWN is obtained as
a particular case of the WSN. Finally the conclusions are given in section 5.

2. NLRT for asymmetric dichotomous Markov noise

We assume now that the noise £(¢} in equation (1.1) is a DMN, as was specified carlier.
We denote by u and p’ the respective transition probability per unit time between the
two values of the noise. In the following we will always consider stochastic processes
with vanishing average value. This implies that for DMN

!
2.8 %
uooop

Then £(t} is characterized by three independent parameters. The correlation function
of the noise can be written as follows [3]

@1

(E(DER)) = @—";‘T,)z-(a ~ A expl—(p + w)lt — t'l]. @22

It has a finite correlation time 7 = (u+u')~! = A~1, and the process defined by (1.1)
is non-Markovian. However, it is possible to reduce the problem to a Markovian one.
This Markovian formulation allows us to construct a set of coupled partial differential
equations [27, 28]. Therefore the study of the NLRT can be made in terms of this
formulation, following the procedures in [13, 24]. The idea of the method is based
on the definition of a vector P(x,t) which obeys the evolution equation

OP(2,1) _ {(2)P(a, 1) 2.3)
at .
where
P(x,t
P(z,t) = (Fg,tg) 2.4
and the operator L(x) is the matrix
o A4 A A - A dg(w)
- , . A—A"dg(x) _ P PR O RN
pop pt '+ o v(z) + ——g()
(2.5)

The meaning of the components in equation (2.4) is given in terms of the joint
probability densities for the variables = and £, namely [6]

P(z,t) = P(z,4;t) + Pz, A1) (2.6a)
Pz, t) = P(z, A1) — P(z,Ast). (2.60)
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The first component of equation (2.4) is the true probability density. Whereas the
second component of (2.4) is not really a probability density but an auxiliary quantity.
In terms of this formalism, it is convenient to define some appropriate quantities
that enable the NLRT (1.6) to be reduced to a quadrature. These quantities are
Wz, t) = P(x,t) — Pyz) 2.7
and

o) = (ggg) 2.8)

where p( ) satisfies the equation
o
plz) = fW(m,t) di. 2.9
1]
Therefore we find that the NLRT, defined in (1.6), can be written as

)
T = éff(w)p(z:)dm. (2.10)

The calculation of equation (2.10) can be made after we find an expression for
p(x). First of all, equation (2.3) allows us to write the relationship between Wz, 0)
and p(z),

- W(z,0) = L{z)p(x) @11

in such a way that the differential equation for p(z) is given by

o= [ (58w 525) A (om0 = ey @12

where the prime denotes the derivative with respect to x, and D4(2) is called the
static effective diffusion j24], which reads as

Dg(z} = ~[v(z) + Ag(z)i[v(z) + &'g(x)] (2.13)

and

(o) = [A + 9(5)] Fz) + [v T A‘g] Fla)+ 22 0m). @19

with
z

F(z) = [ [Ps‘(a:’) —Pu(m’)] dz’ (2.15)

a
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and
h(z) = Pg(z) — Pylz). (2.16)
The solution of the differential equation (2.12) is substituted into equation (2.10)

and after an integration by parts, the NLRT for the stochastic systems derived by an
asymmetric DMN will be

= f e et "“g(ﬁ)'] Fiz)

+A'1[(U+A;A’g)6P—A;A’g 6?]}(1.1: (2.17)
where

I(z) = _f (f(n:’) - (f)sl) P, (') de’ 2.18)

P,(z) Dgi“("i) exp (A D”—i“’(’;)—)) dz’ (2.19)
and

5P = F'(2) = Py(z) - Py(a) (2.20)

6P = h(z) = Py(a) - Py(x) 2:21)

where P (x) arises from a simple analysis of equation (2.3), then

= 2 v !
Pute) = 5o | 2+ S5 Ao, -2

The structure of solution (2.17) is very similar to that found in {14] to first order
for the correlation time = for Gaussian coloured noise. In fact, we have a first
contribution in (2.17) which would be a GWN solution of an effective Markovian
problem. The second term is of order 7 = A~!, and it is a term which couples
information about the initial conditions of the system wvariable z and the noise
variable, £, It also contains information about the type of model.

The initial decoupling between the system and noise variables, would be a simple
hypothesis to describe the initial relaxation of the system. This assumption simplifies
the second term of (2.17) to a simple quantity Tv(z)F,(x). However, the case of
great interest which connects with real situations, focuses on the distributed initial
conditions and this means that the initial conditions have a certain probability density
with finite width. The most general case would be the one in which the initial state
corresponds to the steady state of a certain model with other parameters v*, g*, A*
and A”. This is Py(z) = P;(x), where P is the same as (2.22) but

. 2 v AT+A"]
PSI(:E) = Aﬁ _ AH [F + 2 ]Psl(x)

(2.23)
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which reduces (2.17) to the following expression

e f Datsrt [+ 87 (3) [ —ane (34 24 e

A_Ai ’U* A* + Am ;
+ (m) (? + —2—")} Psl(’v)} de. (2.24)

3. The NLRT for white shot noise (WsSN)

In order to see the self-consistence of the general result obtained in section 2, we
will show how equation (2.17) can be reduced, in an appropriate limit, to the NLRT
for a system driven by a WSN.

For the WSN case we take the limits p’ — oo, A’ — oo, with A"/’ = w; = cte.
The parameter p plays the role of A and A becomes equal to —Aw,. In this case

1 1 1

N foy - A-ID 7.5  Dra G.1)
Leg @) A7 Lg% LT

AL 1

= — 3.2

Deﬂ(x) Deﬂ("l:) ( )

-1 t !
AT A+AY  A+A wy 63

Dg(2)  Dglz)  Dyz)

In equation (2.17) we can note that the factor —A contributes to a constant term,
and thercfore it does not vanish. So we must analyse with some care all the second
terms of (2.17). Let us define J(x) as

Jz)=[v+ 1A+ A'gl6P - LA - A")g 6P (3.4

which can be written in an explicit way, taking into account equations {2.20)-(22) and
(2.6), as

J(z) =2[v+ LA+ A)gl6P + vFy(z) - g[AP(z,A,0) + A'P(x,A,0)].
(3.5)
We now call
B(z) = AP(z,A,0) + A'P(z,A',0). (3.6)

If we assume that at the time { = 0, the variable of the system x and the two
values and of the noise are decoupled, and taking into account that both initial
distributions are the same as the initial stationary probability (see [6], p 259), we
obtain

B(z) = @(Au’ — A’y =0. (3.7)
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Therefore, in the considered limits and with the additional hypothesis about the

initial decoupling between the noise and system variables, the time scale for the WSN
is given by [29]

[
T=1 e Sy F(@) + wa(Pu@) = Ay(2))] d @-8)

EU s Ds(r)Pst(
where F(z) and f(x) are the same as in (2.15) and (2.18) respectively; and
D (z) = wyg(A-v)

S B v(z') y
Ful=) (v—Awog)“’""( / Zea @0 = Nagg (] © ) ¢

4. NLRT for Gaussian white noise (GWN)

This time scale can now be obtained from equation (3.8) in the limits wy — 0, A — o0,
but Aw? = D = cte. In these conditions we get

1 1

L .1
D(x) Dg? (“41)
“y
-0 4.2)
D,() (
Then, the NLRT for the dynamical system (1.1) driven by GWN reads
1 / I{z)F
T de (4.3)

= —CT()N Dg*(z) P,

which is a known result and P, corresponds to the expression for GWN [12-14].

5. Conclusions

We have obtained, in general circumstances, a formal and exact expression for the
NLRT for characterizing the transient dynamics of systems driven by asymmetric
dichotomous noise.

Expression (2.17) shows a quasi-Markovian contribution in the first term and the
non-Markovian effects appear in the second term. The important point of our result
is that, as in the coloured noise problem [14], the non-Markovian contribution shows
a natural initial coupling between the system and noise variables. Therefore the
NLRT is an appropriate quantity with which to study non-Markovian effects on initial
conditions,
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